Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation.
نویسندگان
چکیده
Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act in synergy to regulate skeletal muscle hyperemia by determining the following: (1) the effect of adenosine receptor blockade on skeletal muscle exercise hyperemia with and without simultaneous inhibition of prostaglandins (indomethacin; 0.8 to 1.8 mg/min) and NO (N(G)-mono-methyl-l-arginine; 29 to 52 mg/min); (2) whether adenosine-induced vasodilation is mediated via formation of prostaglandins and/or NO; and (3) the femoral arterial and venous plasma adenosine concentrations during leg exercise with the microdialysis technique in a total of 24 healthy, male subjects. Inhibition of adenosine receptors (theophylline; 399+/-9 mg, mean +/- SEM) or combined inhibition of prostaglandins and NO formation inhibited the exercise-induced increase in leg blood flow by 14+/-1% and 29+/-2% (P<0.05), respectively, but combined inhibition of prostaglandins, NO, and adenosine receptors did not result in an additive reduction of leg blood flow (31+/-5%). Femoral arterial infusion of adenosine increased leg blood flow from approximately 0.3 to approximately 2.5 L/min. Inhibition of prostaglandins or NO, or prostaglandins and NO combined, inhibited the adenosine-induced increase in leg blood flow by 51+/-3%, 39+/-8%, and 66+/-8%, respectively (P<0.05). Arterial and venous plasma adenosine concentrations were similar at rest and during exercise. These results suggest that adenosine contributes to the regulation of skeletal muscle blood flow by stimulating prostaglandin and NO synthesis.
منابع مشابه
The Role of Nitric Oxide and Prostaglandins in the Effect of Adenosine on Contractility, Heart Rate and Coronary Blood Flow in Guinea Pig Isolated Heart
It is a well-established fact that adenosine and its receptor subtypes (A 1 and A ) are involved in changes of contractility, heart rate and coronary blood flow (CBF) under different circumstances. This study was conducted to evaluate the role of nitric oxide and prostaglandins in development of these changes. For this purpose, Nitro-L-Arginine methyl ester (L-NAME), and indomethacin as inhibit...
متن کاملRole of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کاملEffect of nitric oxide on skin blood flow of intact and morphine- dependent rats
Introduction: The relation between morphine and nitric oxide release has been shown. Due to important role of nitric oxide in regulation of skin blood flow, the aim of this study was to investigate the effect of nitric oxide synthase inhibitor (L-NAME) and nitric oxide synthesis precursor (L-arginine) on skin blood flow of intact and morphine-dependent rats. Methods: Skin blood flow of hind pa...
متن کاملATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine.
Plasma ATP is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study investigated: 1) the role of nitric oxide (NO), prostaglandins, and adenosine as mediators of ATP-induced limb vasodilation an...
متن کاملNitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia
Objective(s): Nucleus Raphe Magnus (NRM) that is involved in the regulation of body temperature contains nitric oxide (NO) synthase. Considering the effect of NO on skin blood flow control, in this study, we assessed its thermoregulatory role within the raphe magnus. Materials and Methods: To this end, tail blood flow of male Wistar rats was measured by laser doppler following the induction of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 53 6 شماره
صفحات -
تاریخ انتشار 2009